
J. Fluid Mech. (1994), vol. 272, pp. 21 1-233 
Copyright 0 1994 Controller, HMSO, Norwich, UK 

21 1 

A Hamiltonian structure with contact geometry for 
the semi-geostrophic equations 

By I. ROULSTONE’ A N D  J. NORBURY’ 
Forecasting Research Division, Meteorological Office, London Road, Bracknell, Berkshire, 

RG12 2SZ, UK 
Mathematical Institute, 2 4 2 9  St. Giles, Oxford, OX1 3LB, UK 

(Received 9 November 1992 and in revised form 11 February 1994) 

A canonical Hamiltonian structure for the semi-geostrophic equations is presented and 
from this a reduced non-canonical Hamiltonian structure is derived, providing a fully 
nonlinear version of the approximate linearized vorticity advection representation. The 
structure of this model is described naturally within the framework of contact 
geometry. A Hamiltonian approach leading to a symplectic algorithm for calculating 
solutions to the equations of motion is formulated. Basic necessary functional methods 
are introduced and the Lagrangian and Eulerian kinematic structures are discussed, 
together with their relevance to symplectic integrating algorithms. 

1. Introduction 
Salmon (1985) has offered a new approach to semi-geostrophic theory using 

approximations to Hamilton’s principle within the framework of Lagrangian particle 
labelling and has subsequently showed that the method may be understood in terms of 
generalized Hamiltonian systems (Salmon 1988 b). In this paper we derive a symplectic 
approach to the semi-geostrophic equations with a view to using the results in 
numerical Hamiltonian mechanics, a relatively recent and promising development in 
numerical analysis (see Feng 1991 ; also McLachlan 1993). 

The use of Hamiltonian methods in fluid mechanics has become the fashion in recent 
years as this enables one to use methods of modern geometry and algebra, in particular 
the symplectic structure and associated Poisson bracket, in formulating the equations 
of motion, giving insight, in particular, into the relationship between the underlying 
kinematics and the dynamics of the fluid. We use the word kinematics in the sense of 
volume-preserving rearrangements of the fluid particles in the physical domain and 
reserve the term dynamics for the description of the evolution of the flow. 

The Hamiltonian approach may be especially important in atmospheric dynamics 
for a variety of reasons. The Lagrangian versus the Eulerian formulation of the 
kinematics, the stable long-time numerical integration of the equations of motion and 
the existence of a relationship between symmetries and conservation laws (Noether’s 
theorem) are all subjects of significant interest to the theorist and modeller. Studies 
using filtered or balanced models (which attempt to focus the solution effort on stable 
fluid behaviour) are essential for describing flow regimes that dominate certain spatial 
or temporal scales. In these cases the Hamiltonian approach offers a systematic method 
for studying, for example, the conservation laws and related symmetries of the model 
which are preserved exactly even though approximations to the full equations have 
been used. 

In this paper we are concerned with a three-dimensional version of the semi- 
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geostrophic (SG) equations (Hoskins & Draghici 1977). Hoskins & Bretherton (1972) 
showed that the SG equations may be expressed in terms of Lagrangian conservation 
laws and Cullen et al. (1987) have developed a numerical model (the so-called geometric 
model) which represents the fluid as a finite collection of parcels with conserved 
momentum and thermodynamic labels. A stable manifold within the dynamical system 
of the atmosphere is defined by using a convexity principle to minimize the energy. An 
extra advantage of this principle is that it applies to variables which have 
discontinuities. It is not our purpose here to discuss the solution structure of either SG 
theory or the geometric model, but rather the kinematics and the generation of the 
consistent dynamics. Salmon (1985) and Shutts (1989) have obtained versions of the SG 
equations from Hamilton’s Principle - a statement that encompasses Newton’s laws of 
motion. Their approach is based on Lagrangian kinematics (in the sense of 
position/velocity space), whereas for the purposes of studying numerical Hamiltonian 
dynamics and identifying the symplectic algorithms, the basis of our study needs to be 
fully Hamiltonian. 

Here we are concerned with Lagrangian (in the sense of particle labelling 
coordinates) and Eulerian formulations of the equations. Recent developments 
(Channel1 & Scovel 1990; Feng 1991; McLachlan 1993) in the numerical integration 
of Hamiltonian systems have emphasized the importance of preserving kinematic 
structure in solution strategies for these models. We will pay particular attention to this 
structure as the SG equations of motion may be written either as an infinite set of 
coupled ordinary differential equations or, as in the formulation of the geometric 
model, an advection equation based on a nonlinear vorticity/streamfunction system. In 
this latter case the nonlinear Monge-Ampere equations replaces the usual ‘ vorticity 
equals the negative of Laplacian of streamfunction ’ relationship. A natural description 
of this system is found within the framework of contact geometry and is discussed in 
$4.2 of this paper. The contact geometry together with convex analysis and their 
application to atmospheric flows offers a new and crucially different perspective on 
both balanced systems (as they are known in the meteorological literature), and 
vorticity/streamfunction theories (see, for example, Shepherd 1990 for a review of the 
latter). 

It is natural to develop the structure of infinite-dimensional systems in analytical 
mechanics from those of point particles. This approach is adopted by Salmon (1988a) 
and Shepherd (1990), and therefore we will not expand upon these matters here. It is 
sufficient for our present purposes to note that there are applications of finite- 
dimensional systems in fluid dynamics that form a useful approximation to the 
continua and models that exploit these ideas have been developed. Of particular 
interest are those with structures familiar from analytical mechanics (see, for example, 
Purser 1988 and also Shutts & Cullen 1987). A brief review of functional methods and 
symplectic geometry is given in the Appendix. Sewell & Roulstone (1993a, b) discuss 
some of the relevant features of canonical, contact and Legendre transformations. See 
Salmon (1988a) and Shepherd (1990) for introductions to Hamiltonian methods in 
fluids and Marsden’s (1992) lectures, for a discussion of symplectic methods in 
numerical models. 

The paper is organized as follows. In $2 we give a brief review of the definitions of 
Hamiltonian systems. In $ 3  the SG model and the Legendre transformation, under 
which the equations take a particularly simple form, are discussed. We then proceed 
in $4 to describe the Hamiltonian structure of the equations and discuss the symmetries 
and conservation laws. In particular, we show how the symplectic structure (the 
conserved geometry) of a Hamiltonian system, the crucially locally conserved nonlinear 
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balance, is represented by conservation of vorticity on fluid particles. Finally, in $95 
and 6 we summarize with a discussion of the applications of this work in numerical 
modelling. An Appendix contains an introduction to some of the mathematical 
methods that are used in this paper. Index or boldface vector notation, and the 
summation convention will be used throughout. 

2. Hamiltonian systems 
We begin with a definition of a Hamiltonian system, to make it clear that our 

approach requires more than the identification of an appropriate energy functional as 
a Hamiltonian. 

DEFINITION 1. A Hamiltonian system consists of a Poisson manifold, that is a manifold 
8 together with the bilinear operation { , } on 9, known as the Poisson bracket, and a 
function 3, on 8, called the Hamiltonian that generates the evolution of an observable 

(See the Appendix for the definition and discussion of the terms used here.) In 
particular, if the system is finite-dimensional and the matrix Jii takes the form 

0" 1" 
Jii = (- os), 

with 0" and 1" being the n x n zero and identity matrices, then the system is said to be 
canonical. A transformation of the phase-space coordinates zi that preserves the form 
(2) is called a canonical transformation or symplectic map. To make this clear, consider 
a change of coordinates zi wf"(z j )  ; then the equations satisfied by f" are 

where A: is the matrix of derivatives af"/dzj and A:T is the transpose of A:. The new 
equations will be Hamiltonian iff A JA = J, that is, the transformation must preserve 
the canonical (cosymplectic) structure. For further discussion of canonical trans- 
formations, see Sewell & Roulstone (1993a). A symplectic numerical scheme is a 
finite-dimensional Hamiltonian system with the transformation from data at a time 
level t ,  to data at time level t ,  being symplectic or canonical. 

In this paper we consider systems of partial differential equations that may be 
written in the form 

a Z  

at - = y A ( 3  1, 

where is, in general, a skew adjoint matrix of (pseudo-) differential operators, 3 [ z ]  
is the Hamiltonian functional and A denotes the variational derivative with respect to 
z,  6/Sz. These considerations are formal as the Sobolev subspace of L2 under 
consideration will not be specified. If we assume that 2 has an inverse y-', and that 
all operators are defined in the sense of the inner product ( - I - ) (see the Appendix for 
further detail), than (3) becomes, again formally, 

In addition, 2 explicitly depends on the function z and its derivatives, so it is not 
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canonical. Therefore the closure condition on the associated symplectic structure, 
which is the infinite-dimensional analogue of Darboux’ theorem (Arnol’d 1989) giving 
the necessary and sufficient conditions for a variable skew-symmetric matrix to be 
equivalent to the standard symplectic matrix (2), is not easy to prove. In infinite 
dimensions, the degeneracies off make it hard to determine an easily defined change 
of coordinates to the standard form. Note that Salmon’s (1985) work is for canonical 
systems. A non-canonical example is discussed by Olver (1982) for the Euler equations, 
where the operator equivalent to f is shown to have an inverse. A further related 
difficulty that reflects the difference between Eulerian and Lagrangian variables is that 
az/at is not the same as the derivative with respect to the Lagrangian time label 7 (see 
$4 for an explanation of the notation). Our aim is to show that (1) is the appropriately 
reduced, non-canonical Hamiltonian system for the SG equations, when zi, { , } and 
6/6zi are appropriately identified. 

3. Semi-geostrophic dynamics 
3.1. Equations of motion 

SG theory is an attempt to model atmospheric flows that vary on scales of typical 
synoptic patterns with characteristic timescales of at least several hours. Current 
operational forecast models, however, use a system of equations which describe a wider 
class of solutions than these, which include fast-moving inertia-gravity waves and 
sometimes sound waves. There are a number of summaries of the SG equations, their 
derivation and application. Here, we will follow the argument of Cullen et al. (1987) 
and sketch a derivation of the equations to motivate our basic p.d.e. model of the 
equations of motion. We do this to show that energy minimization is a key concept 
underlying this model. 

Recall that the Boussinesq hydrostatic equations for the motion of a dry atmosphere 
can be written in terms of local Cartesian coordinates (x,y,z) on some domain D of 
a hemisphere, with y pointing north polewards and z as the vertical. The equations of 
motion for the two horizontal components of the velocity v E (u,v) are 

which are taken together with hydrostatic balance a$/az = gB/B,, incompressibility 
V, .u  = 0, and conservation of potential temperature DB/Dt = 0. The material 
derivative is defined in terms of the locally Cartesian coordinates as 

~a 
- E -+u.v,; 
Dt at 

u E (u, u, w) are respectively the three components of velocity and f is the Coriolis 
parameter (this amounts to a tangent plane approximation in that the effect of rotation 
is accounted for but not the variation of the Coriolis effect with latitude); and $ is the 
geopotential. The boundary conditions at the ground surface and top of the model 
atmosphere are taken as w = 0 at z = 0, H .  

Cullen et al. identify a balanced model by the requirement that motion be 
constrained so that an invariant energy of the system be minimized at all times. The 
expression for the energy of the full Euler equations is usually approximated by 

k = (4) 
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The equilibrium configuration is defined by requiring that the energy integral be 
stationary with respect to any virtual displacement of the fluid. The flow will be in 
geostrophic and hydrostatic balance, when the energy integral is stationary, if the 
horizontal velocity field is parallel to the &contours. Equilibrium means that the 
horizontal acceleration is small compared to the balancing terms. In the meteorological 
literature this would be referred to as neglecting the ageostrophic acceleration (see 
Hoskins 1975), and it suggests defining a geostrophic horizontal velocity field (ug, ug) 
in balance with the horizontal pressure gradient. 

We seek 4, ug and ug to be approximations to 6, u and ZI and define them as follows. 
The evolving equilibrium model corresponds to the solutions of (see Hoskins & 
Draghici 1977; also Purser & Cullen 1987) the following approximations to the 
Boussinesq hydrostatic equations for the motion of a dry atmosphere : 

1 a4 DU 

DV a$ DV -+fu+- = -J+f(u-uu,) = 0, 

-- Dug fu + - = 9 -f(u - us) = 0, 
Dt ax Dt 

Dt i3y Dt 

DB - = 0, 
Dt 
v,*u = 0, 

with $, ug and vg related by 
(7) 

Here, u means the velocity of the fluid particle at x,  although now the particle evolves 
according to the above equations. 

Defining transformed coordinates 

we find that ( 5 )  and (6) may be replaced by (using Dx/Dt = u) 

that is, the motion in these transformed coordinates is exactly geostrophic. In these 
transformed coordinates a consistent approximation to the energy integral can be 
written as 

=f" J (${(y-  Y)z+((X-x)2)-Zz)dxdydz. 
D 

When written in this form, the condition for the integral to be stationary under the 
virtual displacements that we have considered may be expressed in terms of a convexity 
condition on a streamfunction for the geopotential (Cullen et al. 1987). We will 
introduce such a function in the next section and refer to the expression for the energy 
integral (10) in 94.5. 
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defines a consistent form of the Ertel potential vorticity in SG theory, satisfying 

- _  Dq - 0, 
Dt 

as a lengthy calculation shows. The conservation of vorticity and potential vorticity 
arises naturally in mathematical terms from the particle labelling structure in the 
Lagrangian framework (see Salmon 1988 a) and equivalently, in an explicit 
Hamiltonian sense, from the invariance of the symplectic form (see $4.4 and Abarbanel 
& Holm 1987). 

3.2. The Legendre transform 
We now focus on the general theorem that (12) represents, that is that potential 
vorticity is conserved on particles as they move in physical space, and attempt to 
reformulate this principle in an explicitly Hamiltonian way. Equations ( 5 )  and (9) have 
a particular duality structure. The vector X may be expressed as the gradient of some 
scalar function P(x) 

Within an arbitrary additive constant this function is uniquely defined by, from (8), 

x= V,P. (13) 

1 P = -$h+;(x2+y2). f 
Define Q(x) = V, X ,  

then Q is the Hessian of P with respect to x :  0 = V,V, P = Hes(P). Q is symmetric, 
so when it is non-singular its inverse exists, and 0-’ = Vxx, the inverse Jacobian, 
where 

is symmetric also, implying that x is the gradient of some scalar function R(X): 

To determine R, note that 
x=V,R. 

dR = x * d X =  d(x.X)-X.dx = d(x.X-P) 

so that R is given to within an additive constant by 

R(X) = x*X-P(x), 

which is the expression for the Legendre transform between R and P. From (7) and (12) 
we infer that the motion is non-divergent in X-space V,.u, = 0, and therefore, being 
constrained to Z-surfaces since (9) has Z = 0, is expressible in terms of a streamfunction 
y/ by 

( U g , V g , O )  =-  -- -,o . 
f Y wax 
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From (8) and (15) 

and hence the simplest form for Y is given by 

Y =fygx2 + Y2) - R(X)) .  (17) 

The particular duality structure described above is but one realization of a quartet of 
Legendre transformations described in Chynoweth & Sewell (1989). 

3.3. A solution strategy 
The Lagrangian variable formulation is central to the use of this model in simulating 
flows with discontinuities. We outline the numerical method as discussed by Purser & 
Cullen (1987) and Cullen, Norbury & Purser (1991) to show that the above 
formulation leads to a natural phase-space description. 

In order to solve the equations of motion we seek a solution strategy based on the 
dual space representation. At each timestep define a distribution of 

p ( X )  = q-’(x) = det (Q-’) 

and solve the nonlinear elliptic or parabolic (Monge-Ampere) equation for R : 

det lHes (R)I = p 

subject to the boundary conditions implied by the requirement 

V ,  R = X E D ,  

where D is the physical domain in x-space whose total measure ,u must equal the 
integral of p in X-space. In general however, the boundary conditions imposed with 
respect to the domain in which the fluid motion takes place need to be translated into 
conditions on VR. For R convex and t a tangent vector to any line through the 
components, t - V R  must be monotonic as we move along the line. This implies that x 
is monotonic as X moves along the line. Internal component boundaries need 
continuity conditions, while the external boundary of the components corresponds to 
the boundary in the x-domain. 

The next step is to use Y defined in (17) in terms of R given by (18) to update the 
conserved density p ,  according to the advection equation 

Hence, the principle behind this strategy is to construct a solution via a sequence of 
time-independent elliptic problems. Thus we find the a/at operator on the left-hand 
side. It is commonplace to find in the literature the equations of motion written in 
terms of vorticity/streamfunction variables. The example that we have here could be 
thought of as a nonlinear version of those models. A detailed examination of the 
application of these techniques but with an analytical approach can be found in the 
work of Abarbanel et al. (1986) and Shepherd (1990). The model is three-dimensional 
despite the structure of the advection equation (19). As mentioned, at each timestep the 
MongeAmpkre equation is solved, providing the three-dimensional coupling between 
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the advection steps. It would therefore appear to be consistent to think of the model 
as essentially isentropic in the sense outlined in $3.2. This picture leads us to the main 
result of the paper (94.5): a Hamiltonian approach to (19). 

4. Hamiltonian structure 

Introduce Lagrangian particle labelling coordinates (a, b, c) = a, assigned at 7 = 0 
4.1. Lagrangian kinematics 

X(a, 7 )  : X(a, 0) = a, a E r c R3. 

Within this framework time is labelled 7 ;  a/at  means that X are held fixed while a/a7 

means that a are held fixed. This gives a/a7 = D / D t .  The Lagrangian mass label has 
been chosen to incorporate the mass density p" via 

p d X  = d (mass) = da. 

With this choice /I becomes the Jacobian of the inverse of the map ( a ) - ( X ) ,  that is 

This map gives the fluid flow. In $3.1 (and in the literature referred to therein) the 
potential vorticity q, and its inverse p, were given by the ratio of the measures in x- 
space and (dual) X-space. Thereby it is implicit in that description that there is a 
constant mass-weighting given by 

a(x> 

and set equal to unity. Thus p = p. In this paper (and as in Shutts 1989) the dependence 
on the particle label coordinates will be explicit and henceforth we just refer to p. In 
addition, we take p to have compact support in r to avoid later difficulties with 
boundary conditions. 

4.2. Contact geometry and semi-geostrophic theory 
The subject of contact structures in classical mechanics has a long history. 
Caratheodory (1982) discusses the development of these ideas and Sewell & Roulstone 
(1993 b) have elucidated the relationships between lift, contact and Legendre 
transformations, by studying a new family of contact transformations and illustrating 
these features by providing a number of explicit examples. Blumen (1981) appears to 
have been the first to identify the contact nature of the geostrophic momentum 
transformation and this is an example discussed by Sewell & Roulstone (1993 b). More 
recently, Purser (1993) has described a general contact structure of the energy 
minimization approach to SG theory. In this subsection we describe the SG phase 
space in terms of contact geometry and show how these ideas enable us to write down 
variational derivatives for the functionals that arise in the Hamiltonian system. For 
clarity we confine our discussion to the lowest-dimensional case. 

The basic notion of Legendre duality is depicted in figure 1. Using the notation from 
$3.2 and considering the lowest-dimensional case, we observe that a point in the (P, x)- 
space, which we shall denote by (Pa, x,), defines a unique line R, in (R ,  X)-space. Here 
01 is to be interpreted as an independent parameter (that is, specifying a picks out a 
particular point and thus a particular line). The equation of this line is R, = x, X -  Pa. 
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FIGURE 1. Legendre duality. 

FIGURE 2. A representation of contact manifolds. 

Thus -Pa is the intercept on the R-axis of the line which has a slope given by x,. When 
the point is allowed to move (continuously) along a curve in (P,x)-space a family of 
lines envelope a curve in (R,X)-space. Each member of the family (labelled by the 
(continuous) variable a) of lines is in contact with this surface. We claim that a solution 
R of the Monge-Ampere equation (18) in our model is the in$mum of a family of 
generating lines {Ra}, each member of which is specified by a unique a. We remark that 
the dual solution surface P is the supremum of a family of generating lines each 
specified by a unique X (see also Purser 1993, p. 1451). 

It is convenient to represent the duality depicted in figure 1 by augmenting the 
dimension of these spaces by one, which is achieved if we introduce the dual variables 
x , X  into the spaces (R,X) and (P,x), respectively. This is illustrated in figure 2. We 
now impose the gradient relationships on the variables x and X: thus x = V, R and 
X = V, P. The spaces depicted in figure 2 are realizations of so-called contact manifolds 
(see Arnol’d 1989, appendix 4; Burke 1985, pp. 99-108; Sewell & Roulstone 19933). 
That is, to each curve in the ( P , x ) -  or (R,X)-plane, there corresponds a space curve 
(known as a lifted curve) whose elevation above the base plane is given by the slope of 
the plane curve (its contact line) at the ‘base point’. The mapping between the three 
variables (P, x, X) and (R, X, x) is a particular example of a lift transformation (see 
Sewell & Roulstone 19933 for details). We avoid the use of the word tangent here as 
it has a precise meaning in differential geometry and this is the reason why the adjective 
contact is used. 
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X 

rjL(X) 

FIGURE 3. A family of solution surfaces. 

Now we shall consider variations of the generating lines and of the ‘solution’ or 
‘envelope’ surfaces. In terms of the parameter a, R, on the envelope may be varied with 
respect to X ,  (the contact point between the line R, and the envelope), x,, and Pa as 
follows : 

(21) 
We treat the gradient relationship (13) as a constraint in (21). Hence, by restricting the 
otherwise free variations Sx, and SX, by the identity 

SR, = SX,  X ,  + X, SX, - SP,. 

we find that the variation of R, for given 01 is (using, since P = P(x), the exact 
differential relationship dP = (aP/i3x) dx) 

SR, = x,SX,. 

This is a result to be used later in 94.3 on the canonical Hamiltonian formulation of 
the equations of motion. In that section we identify 01 with the continuous particle label 
a and thus we may interpret the above as the variation of the potential R(X(a)) at fixed 
a. (Note that (22) is consistent (in one dimension) with (15).) 

We may choose to fix the coordinate X and then consider (21) with (13) treated as 
a constraint. If this is carried out, we obtain 

SR = XSX-SP = 0. 

We have dropped the suffix a because in our application later the coordinate X is 
treated as the independent parameter. This result will be used in 94.5 on the reduced 
Hamiltonian formulation. 

Finally, we consider variations of the solution surface R at fixed X and x.  That is, 
referring to figure 2, at a fixed point in the three space (R,  X ,  x) .  To distinguish a 
solution surface in the (R,X)-plane from its envelope of lines we shall denote such a 
surface by %(X) .  We are at liberty to consider a family of solution surfaces {%}, each 
member of which passes through the fixed point (R’,X’) (see figure 3), and they all 
share a common lift x’ at that point. (A curve passing through the point (R’, X’) but 
with a different value x’ would not share the common contact line of the members of 
the family that do share a common value of x’ at that point. That is, the curve would 

(23) 
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‘cross’ the others at (R‘, X’) ,  as opposed to just meeting them at that point.) The ith 
member si of {%} has a second derivative pi  at (R’, X’, x’) given by 

We may therefore consider variations Sp and interpret them as varying $li-amongst 
{%}. In fact, the label i is the parameter which is to be varied in (24). In general, these 
variations 6p will be non-zero, even though the variation of the contact line at (R’, X’) ,  
6R as given by (23), is identically zero. We shall be led to consider such higher-order 
quantities in the formulation of the reduced dynamics. 

4.3. Hamittonian dynamics 
The equations of motion as written in (9) possess a canonical Hamiltonian structure 
in the sense of Definition 1. For any differentiable function R of X for which we write 
the relationship (1 5), we can define the Hamiltonian functional 

dy (i(Xz((a) + Y ‘((a)) - R(X(a))), 

where dy is the measure over the Lagrangian particle labelling coordinates and Y is 
defined by (17). This functional is autonomous in our basic solution strategy of 33.3.  

We now write our equations of motion (9) in Lagrangian phase-space variables X a s  
a Hamiltonian system by means of a Poisson bracket defined as follows. 

PROPOSITION 1. The equations of motion (9) take the form on surfaces of constant 2, 

where { , Ic  is given by 

Proof. Calculating the functional derivatives of (25) we find (see the Appendix, 
(A 2) and (A 3), and recalling our remarks in the previous section), noting (16), that 

Using (A 4) (see Appendix), we obtain the equations of motion (26) 

ax I 6 2  - - - 
a7 f s r  =‘g, 
- a Y  - - -~ 1 6 2  - 
a7 f s x  - ‘g, 

in agreement with (9). 0. 

conserved, since 
One can show directly in these variables that the X-space mass density p, is 

{ P ,  2 > c  = 0, 
8 F L M  212 
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With this form we calculate the variation of p with respect to X j :  

where we have used 

It is useful to note the identity 

known as the Piola identity, which has been used frequently in these calculations. Thus 
8p/GXj is given by 

Using the shorthand notation for Jacobian terms and derivatives 

p - - -  
azi & _= v, 

' ax3 

" 

we find that the expression for the Poisson bracket is 

a 
= f'Ifdf (( - 1) b-'('j)b bZ8(a - a") - ( Y  - y )  +,&I( ,6); b28(a -a") 

86% 

where we have integrated by parts and discarded the boundary terms (because of 
compact supports) which are of the form ,628(u-a") l a  to go from the first line to the 
second and used volume conservation in the last step. 

Conservation of potential vorticity may be established using the procedure outlined 
above by noting that 

q(a) = Ipd?8(a-a")b-l 

and thus 

Alternatively one may demonstrate by using the Lagrangian, and Noether's theorem 
(Arnol'd 1989) to relate symmetries and conservation laws, that invariance of the 

{q,  A? j = If df-{b, ;; A? j = 0. (27) 
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Hamiltonian system with respect to the allocation of particle labels leads to the 
conservation law for potential vorticity. This calculation was given by Shutts (1989). 

4.4. Symplectic structure and particle labels 
In this subsection we demonstrate that the conservation of vorticity may be related 
directly to the requirement of symplectic invariance with the choice of canonical 
coordinates Xand Y. The reader who is unfamiliar with the notation used in symplectic 
geometry should refer to the Appendix for a brief introduction. Qualitatively, a 
Hamiltonian system possesses a volume element called the symplectic form, which we 
denote by 52, and this is an invariant in the sense that its Lagrangian derivative along 
the flow vanishes. One can identify a natural dual to 52, such that their inner produce 
is a scalar. We refer to this object as 0, known as the cosymplectic structure. The 
Lagrangian derivative along the flow of the scalar vanishes and, following Schutz 
(1980, pp. 171-174, and references therein), we identify this behaviour with a 
conservation law. As in the case of the proof of the vanishing of the Poisson bracket 
(27) this approach is essentially Hamiltonian and thus the introduction of the 
Lagrangian functional is unnecessary. We express the form of the symplectic structure 
52, (A 8), and the cosymplectic structure 0, (A 9), in terms of the canonical bases dli 
and a/ali. Here 1' ++ (a, b )  are the particle labels on Z-surfaces by choosing c = 2, and 
the indices are taken to run over the values 1,2. We write 

where 0 = ;Jii(a/ali) A (a/ali) and the notation ++ means interchange a and b. The 
above integrand may be written, using (8), as 

which is just the SG potential vorticity (as aZ/ac = 1). Equation (28) is, therefore, an 
important relationship between the dynamical invariant q Iz and the canonical 
kinematic structures 0 and SZ. The statement here is that the symplectic inner product 
on the particle labels (that corresponds to the dual-space mass density, or equivalently 
the inverse of the potential vorticity) is conserved. When we discuss numerical 
modelling of Hamiltonian systems in 9 5 the importance of preserving kinematic 
invariants will be emphasized. Thus at this stage we note that any consistent 
Hamiltonian numerical scheme for the SG model should be symplectic and potential 
vorticity preserving. 

4.5. A non-canonical Hamiltonian approach to the advection equation 
We make some brief remarks concerning the generalization of the results of 92 to non- 
canonical systems. Suppose that a system has densities 9, '3, which are functionals of 
canonical coordinates (observables) zi. Thus the Poisson bracket for such a system is 
given by (A 7) with bilinear structure (2). It may be possible to write the Poisson 
brackets (and thus the equations of motion) in terms of non-canonical coordinates 
P(e)  where a < i (Greek indices will be used on functionals of Eulerian variables 
denoted e),  in the following manner : 

8-2 
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This will lead to an expression of the form (A 7) but with Ji j  more general than (2). We 
will show that this structure leads to an appropriate generalization of (19). 

In the following calculations the canonical coordinates zi will be identified with the 
Lagrangian coordinates X i  H (X, Y ) ,  while the non-canonical variable Z will be 
identified with p(Ti). It is the symmetry invariance (often referred to as gauge freedom 
in mathematical physics) with respect to the particle relabelling that enables the 
kinematics of the system to be described in terms of a single observable Z, together with 
a non-canonical structure. For further details of this point see Q 5 and Salmon (1988 a). 

We now seek a reduction of our canonical Hamiltonian system of Proposition 1. In 
order to proceed with a version of (29) we formulate the necessary Eulerian 
functionals. The essential idea is to describe the fluid motion using the mass-density p 
as the dynarnical variable, which is a function of the variables X, Y,  2 (which until now 
have been functions of the Lagrangian labelling coordinates). That is, the configuration 
space for the fluid motion is a region of R3 with coordinate surfaces labelled with the 
values of X, Y,  2. In the meteorological literature the (X = constant, Y = constant) 
coordinates are often referred to as absolute momentum surfaces. As discussed in $3.2, 
motion on the 2 = constant surfaces is known as the isentropic description. To 
emphasize the new interpretation of the coordinates we will henceforth distinguish 
them with an overbar. 

The phase-space mass density is written in functional form as 

p ( X )  = dy S(u(X) - u)- s a m  
= 1 dy S ( X -  X(u)) 

= J dXp(X) S(X-X(a)), 

where we have used the following result in (30): 

S ( f ( x ) ) W  = S(x), ax 
understood as 

With the functional form (30) we find the derivatives of p :  

-- SPtX) a - - S(X- X(u)), sxi(a) axi 
and similarly (31) yields 

We use our previous Hamiltonian (25), but evaluated in phase space solely as a 
functional of p. The Hamiltonian is given by 

(34) 
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where R ( X )  is defined by p from (18) and the boundary conditions. To calculate the 
functional derivative consider the variation 

S H [ p ]  = f 2  dX6p(X)(i(Z2+ P 2 ) - R ( X ) ) + f 2  dXp(X)6(i(X2+ F 2 ) - R ( X ) )  (35) I I 
and examine the second term on the right-hand side. We consider variations at fixed 
(X, F,Z) (cf. figures 2 and 3), and thus the terms involving the dual space variables 
(X, P) do not contribute. The remaining terms may be written as (cf. the material 
following (1 5) and (23)) 

ap 
ax 

6R = ~ ( x - X - P )  = ~x .X- - - .~X  6 x . X - X . 6 ~  = 0. 

Thus from the first term on the right-hand side of (33, we have 

Hence we can treat p as the sole dynamical variable if we consider the variations here 
as a higher-dimensional version of those one-dimensional examples interpreted 
geometrically in $4.2 (i.e. (23) and (24)). In 2 + 1 dimensions p is related to the extrinsic 
curvature K, of the solution surface R, 

1 
K =  

p[1 + x 2 +  Y2]Z 

(see Purser & Cullen 1987 for further details). Note that, unlike the corresponding 
procedure in two-dimensional perfect fluids (Shepherd 1990; Marsden & Weinstein 
1983), no integration by parts is necessary in evaluating the functional derivative of 2. 
It is the contact geometry that distinguishes this Hamiltonian system from that of the 
perfect fluid. 

We note in passing that we can relate this calculation to the energy minimization 
principle. Consider variations for which the energy (10) is stationary, which is a 
consequence of the Monge-Ampere relation (18) in the definition of Z. The integrals 
of the quadratic terms are conserved under the displacements; thus we are left with 

-f '61 dy (xX+ y Y+ zZ) ,  
r 

(37) 

and this is the expression for the energy functional that we require to be stationary for 
evolving equilibrium solutions and hence have taken in our definition of 2 indirectly 
by means of the Monge-Ampere equation. 

We may now formulate the Hamiltonian structure of (19). 

PROPOSITION 2. The equation of motion (19) may be written in the following 
Hamiltonian .form 

= {H, p(x)), at 

with 



a(a, b, c)  a(x, Y ,  2 )  - b, c) det P=a(x,~,z)a(x, Y , Z )  - ~ ( x , Y , z )  

Substituting (39) into (38) gives 

a2R a'R 

a2R a2R ' 

_ _ _ _ _  
ax2 axay 

ayax ay2 

As in the case of the canonical set of equations in $4.3, the boundary terms arising in 
the integration by parts that leads to (40), have the form &(X2-Xl)Ia, and are 
discarded. We may identify 9 with 2 and 9 with p and evaluate the bracket to obtain 
(19). The functional derivatives we require are given by (33) and (36). From (40), we 
evaluate 

ap(X)  a($(x2 + 7') - R) - xe, 
aF f" p X d  PS(X- X )  (r 

Integrating out the variables X leaves us immediately with 

-x* Y )  apd($(X'+ Y2) -R)  

and thus, using (1 5 )  and (16), we have 
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which is precisely the right-hand side of the advection equation (19). 

We note that the form of (40) means that the bracket of functionals depending on p 
alone will be in involution with respect to { , } E  (i.e. their Poisson brackets all vanish). 
We identify the bilinear skew adjoint operator f from (40), and write it 

0 

5. Applications to the geometric model 
There now exist numerical algorithms for integrating the SG equations. The 

geometric ideas originating from Cullen (1983) and developed in Cullen & Purser 
(1984) were subsequently used in the formulation of the geometric model (Chynoweth 
1987). Recently (R. J. Purser, private communication) a much improved and efficient 
version of this model has been produced thus enabling an increased resolution in the 
modelling of atmospheric flows. The basic algorithm was described in $3.3, and $4 
describes the (formal) Hamiltonian structure. 

It is a goal of much current effort to develop algorithms that capture the details of 
the Hamiltonian structure in numerical models. These algorithms are referred to as 
symplectic integrators. A symplectic integrator is an evolutionary finite-difference 
algorithm which has the property that each iteration n is given by a canonical 
transformation (also known as a symplectic transformation) of the phase space. For 
details see, for example, Channel1 & Scovel (1990), Marsden (1992) and references 
contained therein. With regard to the geometric model, we have learned from $4 that 
the essential p-structure is non-canonical and therefore it is natural to ask how one may 
integrate such systems. This leads us to the theory of reduction and reduced symplectic 
integrators. 

Reduction is the rigorous approach to the type of process involved in (29). The 
salient feature of reduction is that the essential dynamics of a system may be described 
in terms of trajectories on a manifold which has a lower dimension than the dimension 
of the problem's original phase space. Suppose there is a group G of symmetry 
transformations of 9 that transform 9 to itself by a canonical transformation. We use 
the symmetry group to generate a vector-valued conserved quantity denoted M and 
called the moment map. If the conserved quantity takes a given value then we consider 
the set of all points in phase space where M has that value. We call this set the level 
set for M.  Assign the value ,u to M. Then the reduced phase space, denoted is 
constructed as follows. 

DEFINITION 2. PP is the p-level set for  M on which any two points that can be 
transformed one to another by a group transformation are identifed. 

The reduction theorem (Marsden & Weinstein 1974; also Marsden 1992) states that 

Yp inherits the symplectic (or Poisson bracket) structure from that of Y, so it can be used 
as a new phase space. Also, the dynamical trajectories of the Hamiltonian 2 on 9 
determine new trajectories on the reduced phase space. 

For further discussion see Marsden & Weinstein (1974, 1983), or for a less abstract 
approach with discussion of the bracket used in (29) see Salmon ( 1 9 8 8 ~ ) .  

The basic structure of the geometric model is symplectic (in the sense of proposition 
2) and the conserved quantity, associated with the reduction to the non-canonical form 
used in the solution strategy, is p.  In order for the numerics to be symplectic the 



228 I. Roulstone and J. Norbury 

timestepping algorithm used should preserve the canonical structure (2) in the 
following way. Let A be the matrix that leads from one timestep to another and 
corresponds to the Jacobian matrix 

where the subscripts 0 and 1 on the variables represent the functions at the two time 
levels. Then we require 

with J given by (2). 

form J,, 

AJAT = J, (43) 

In order for the non-canonical algorithm to preserve the corresponding generalized 

(as outlined in $4.5), the geometric method should conserve p. As indicated by 
Chynoweth & Sewell (1991) a variety of methods may be used to generate the time-At 
map and therefore (43) needs to be imposed for each algorithm; conserving p in 
reduced algorithms is then sufficient for (44) to be correctly defined. 

6. Summary 
Salmon (1985) identified a consistent set of approximations to the shallow-water 

equations that were implemented within Hamilton’s Principle and defined a canonical 
Lagrangian form of the SG equations together with the appropriate Hamiltonian 
functional. The material presented in this paper exemplifies the geometric emphasis of 
modern theoretical mechanics. When studying Hamiltonian dynamics from a geometric 
perspective, it is essential, when formulating a model, to distinguish the features that 
depend on the Hamiltonian function from those that depend only on the properties of 
the structure of phase space. We have now set the SG equations within a formal but 
explicit canonical Hamiltonian framework. We have also derived a reduced non- 
canonical Hamiltonian representation of the phase-space mass density/potential 
vorticity advection equation. The equation of motion for the phase-space mass density 
is written in terms of the ‘vorticity bracket’ which has many other applications (see for 
example Marsden & Weinstein 1983). However, the important difference between the 
other systems that may be described in terms of this bracket (e.g. the two-dimensional 
Euler equations) and SG theory is that the dynamics as encoded in the Hamiltonian 
used here is based upon the Monge-Ampkre equation, or equivalently the energy 
minimization and Legendre duality. It is not necessary in this model to integrate by 
parts to go from a velocity representation of the equations to the vorticity 
representation. Instead the Legendre duality plays a key role as described in the section 
on contact geometry. 

Understanding this framework is essential to a numerical model that seeks to 
capture exactly the Hamiltonian nature of the mechanics, via say a symplectic (or 
canonical) integrating algorithm. 
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Appendix. Hamiltonian methods and symplectic geometry 
A. 1. Preliminaries 

The equations of fluid dynamics whether written in terms of Eulerian coordinates or 
Lagrangian labels represent infinite-dimensional dynamical systems. In what follows 
we will be content with the practice of functional analysis rather than the absolute 
rigour necessary to prove our application in modern measure spaces. The reason for 
adopting such an approach is twofold. First the subject matter : Lagrangian SG theory 
is applicable to flows with discontinuities and the problem of extending the usual 
analysis to such solutions presents a considerable challenge. Secondly, our primary aim 
is to establish the existence of a structure that in practice will be studied within the 
context of a finite-dimensional numerical model. (All the analytical difficulties arise in 
taking the infinite-dimensional limit.) However, it is appropriate to remind ourselves 
of the basic functional methods and formal structure at this stage. 

We begin with a discussion of our typical evolution problem. Consider the following 
system of autonomous evolution (in time t )  equations for a fluid with the configuration 
represented by a generalized coordinate x, and velocity u :  

Here, x E r c R" for some integer n .  The Fi are general nonlinear (partial) differential 
or integral operators on u. We consider the Fi that arise in (26). Here we will not be 
concerned with necessary conditions for the existence and uniqueness of solutions, but 
suppose solutions exist and are elements of some vector space V (usually referred to 
as phase space), over R", that is equipped with the inner product 

Ulg> = p m - ( x ) d y  r for f , g E " l r .  

In Hamiltonian fluid dynamics certain functionals arise from densities defined on V.  
To this end we define another vector space S, over R", of differentiable functionals that 
have the form, for the density G E  Y ,  

g [ul = \rG(u, x) dy, 

where 9 is an operator on V.  Functional differentiation is often defined by the usual 
Gateaux derivative 

where the variation S is taken with respect to functions a that satisfy some boundary 
condition on ar. Equation (A 1) defines the functional derivatives S9/Sui, which, in 
general, is nonlinear in the ui. 

Let us now work through some of the essential steps of the proof of Proposition 1. 
The Hamiltonian is given by 

&'[XI = f I dy (;(P + Y ') - R(X) )  
J r  
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and the variation is 
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where & X i  is interpreted in the sense of (22) in $4.2. Fixing y in this calculation is 
equivalent (except for dimensionality) to fixing a in 34.2. The expression (A 2) yields 
the derivatives : for example on constant-Z surfaces 

If we write the Lagrangian variables as 

X i ( a )  = dy‘S(a-a‘) Xi(a’), S,. 
then we find 

= SijS(a -a’), W ( a )  
&P(a’) 

where Sii is the Kronecker delta. This may be used to establish the following result: 

A.2. Structure of phase space 
The material presented in this subsection is a review of the structure of differential 
equations of the Hamiltonian type, We have used these results in 94.4. 

The evolution of a classical continuous physical system (for example, a fluid) can be 
described in terms of a curve z ( t )  (parameterized by some continuous variable t )  in 
phase space. There are two structures that enter the definition of phase space and 
encode the kinematics of the system. First, the phase or the configuration space is 
described by a differentiable manifold 9 with an appropriate topology. Secondly, there 
is an antisymmetric bilinear operation { ,} on the space of C“ functions from 9 to R,  
denoted by /(.P), such that the operation (defined for all F, X ~ e ( 9 ) )  

L, (9) : [(P) 0 /(9) He(P) 
written as L $ p )  = {F, A!} (A 5 )  
where {F, 9} is defined for any functionals (9,9), by the following properties: 

(i) (F, 9} is bilinear in F and 9. 
(ii) {F, 9 }  = -{9,F} for F, ~ E / ( P ) .  

(iii) the Jacobi condition, 

{€,{F,9}}+{F, {9,€}]+{9,{€,F)}  = 0 for every G, 9, 9,~/(9). 

{€F,9} = €{F,9}+F{€,9} 

The bracket operation makes 3 a Lie algebra. That is, conditions (i)-(iii) make 
(/(9), { , }) into a Lie algebra. Conditions (i)-(iv) define the pair (9, { , }) as a Poisson 

(iv) the Leibnitz’ rule, 
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manifold; that is, a manifold with a Lie algebra structure on the space of differentiable 
functions. This structure is preserved in the following sense. The vector field generated 
by the operation L,, will be denoted X,. Then the causal maps fp, for the flow of 
X, (Abraham & Marsden 1985, p. 60), satisfy 

{F OF, 9 ofp} = {F, 9} 09. 

Z(t) = X, = L,(x) = {z ,  X } ,  

The flow satisfies the differential equations determined by L, : 

where z(t) represents an observable. This flow is called the Hamiltonianflow, and &? 
is called its generating function or Hamiltonian. The Hamiltonian is the map X : Y I-+ R,  
and encodes the dynamics. The evolution equations may be written in terms of this 
structure as 

d 
- (Fofp)  = {F,&?}ofp dt 

or, as the time derivative commutes with the time-t map, 

- {F, X } .  
d F  
dt 
-- 

The formal definition of a Hamiltonian system is given in $2, we now examine the 
structure of the system developed thus far. The conditions (i) and (iv) imply the 
existence of a tensor J on 8, assigning to each point z ~ 8  a linear map between the 
cotangent space (denoted F*)  and the tangent space (F) 

such that 

Here ( , ) denotes the natural pairing between vectors and covectors (forms), d the 
exterior derivative (Arnol’d 1989) generating forms from functions F, and the dot is 
contraction. As we are concerned with a tensor operator we have indicated the 
existence of the map at each point z.  Because of (ii), J ( z )  is antisymmetric. Let zi, 
i = 1, . . ., n denote the coordinates on 8, then (A 5) becomes 

# : 9; 9 w Fz 8 

{F, X>(Z)  = ( d F ( z ) ,  J(z).dY?(z)). 

or in the infinite-dimensional case 

DEFINITION 3. LET 8 be a manifold and 52 a two-form, on P. The pair (9, 52) is called 
a symplectic manifold i f52 satisfies: (i) d 0  = 0 (i.e. 52 is closed), (ii) 52 is non-degenerate. 

(See Arnol’d 1989 and Olver 1982 for definition and further discussion.) If (8,Q) is a 
symplectic manifold, define the Poisson bracket operation { ,} by 

v, X }  = QV,, X,) 
where X ,  is the vector field generated by the function F on 9. This construction 
makes (9, { ,}) into a Poisson manifold. Thus, in other words: 
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PROPOSITION 3.  Every symplectic manifold is Poisson. 

The converse is not true; for example the zero (degenerate) bracket makes any 
manifold Poisson. In our application we need to distinguish between Poisson and 
symplectic manifolds as the former arise naturally in the Eulerian kinematics of fluids. 

The symplectic two-form 52 may be expressed in terms of a (local) coordinate basis 
of one-forms dzi :  

52 = fK,, dzi A dz’, (A 8) 
where A is the exterior product. K is the inverse of J, K = J-’ (see Olver 1982 for 
further details). The cosymplectic tensor field written in terms of the vector basis i3/i3zi 
is 

and may be regarded as the fundamental object determining a Poisson structure, rather 
than the Poisson bracket, which is easily recovered from 0 by 

(F,9) = (dFAdG(O), 

where dF = 52(X,) (and similarly for dG), is the one-form which corresponds, under 
the map b :FY++F*9, determined by 52, to the vector field X F .  Thus we recover 
(A 7). 
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